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ABSTRACT

This report deals with certain problems of propagation

of microcracks (Griffith cracks) and fracture cracks. The

phenomenological approach based on the concept of the con-

tinuum and the methods of mechanics of solids is used. An

energy criterion for equilibrium of cracks in inelastic sol-

ids is formulated in the form which reduces to Griffith's

criterion in the case of brittle solids and, with certain

simplying assumptions, results in Orowan's criterion for

elastic-plastic solids. Another criterion is derived from

the analysis of the stresses at the edge of a crack. This

stress criterion is also extended over time-dependent crack

resistance by relating it to certain characteristics of the

inelastic deformation.

This technical documentary report has been reviewed

and is approved.

W. J. TRAPP
Chief, Strength and Dynamics Branch
Metals and Ceramics Laboratory
Directorate of Materials and Processes
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1. INTRODUCTION

Fracture Mechanics deals with the following two phenomena:

(1) The development and propagation of cracks in

stressed and deformed solid bodies; questions arise concerning

the conditions that cause a crack to develop and propagate or

a propagating crack to be stopped, and the relations between

the mechanical properties of a body and its behavior with re-
spect to crack initiation and propagation.

(2) The well-known discrepancy between the theoretical
cohesive strength of the atomic lattice and the actual (tech-

nical) fracture strength of solids.

In order to explain the latter phenomenon, A. A. Griffith'
assumed that in all solids certain cracks exist which at their

edges cause large stress-concentrations even under relatively

small forces; hence, the average fracture strength of a body

is controlled by the effect of such micro-cracks,. With respect

to their propagation, large-scale fracture cracks and Griffith

cracks can be discussed on the same basis, considering that a

fracture crack is in fact a large Griffith crack; at the lead-

ing edge of a fracture crack in an elastic medium the condi-

tions are the same as in a Griffith crack since no special

properties are attached to Griffith cracks which are assumed

to be large enough to justify a continuum mechanical approach

in the treatment of a single crack. On the other hand, the
analysis of the discrepancy between atomic and technical

strength in brittle materials is based on the assumption of a

multitude of Griffith cracks of random size and orientation,

Manuscript released ky the authors November 1962 for publi-
cation as an ASD Technical Documentary Report.
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and the technical strength is based on their assumed statisti-

cal distribution and the resulting probability of occurrence

of cracks of extreme size, the propagation of which determines

the technical strength.

Thus the problem is, in fact,. transformed into a statis-
tical problem in. which the mechanical considerations only

form the underlying concept of the "weakest link" leading to
the statistical concept of the extreme value distribution of

technical strength.

In phenomenological fracture mechanics, however, the

mechanism of propagation of an individual crack in a contin-

uum is considered, utilizing methods of mechanics of solids.

This phenomenological theory has been fairly successful in

establishing certain laws of crack propagation for brittle

(elastic) solids, in introducing effects of plasticity, and

in dealing with the dynamics of crack propagation. There is
one obvious limitation of phenomenological fracture mechanics:

it can only be applied to cracks that are sufficiently large

in comparison to the inter-atomic distances in the solid.

Because of this requirement, which can be satisfied in the

theory of propagation of existing cracks, problems of crack

nucleation are not accessible to phenomenological methods.

This paper deals with the limited group of problems of

fracture mechanics that may be described as problems of equi-

librium of cracks. The conditions which cause a crack to

propagate or to stop will be investigated under the assumption

that all changes of the state of a body are quasi-static.

Special attention will be paid to the effect of inelastic

properties. The following aspects are dealt with:
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1. General criteria of crack propagation (review).

2. The effect of plasticity (time-independent energy

dissipation).

3. The effect of time and time-dependent dissipation.



2. ENERGY CRITERIA OF EQUILIBRIUM

The energy equation for a body with a propagating check

can be written in the form

= Ur + Ud + k + S (2,1)

where W is the work of the external forces, Ur the revers-

ible part of internal (mechanical) energy, Ud the irrevers-

ible part of internal energy, K the kinetic energy, and S

the surface energy of the crack. The existence of the sur-

face energy has been postulated by Griffithý For quasi-static

problems discussed in this paper, it is assumed that K- 0

Equation (2.1) may be considered as the law of conservation

of energy in a form containing the surface energy S . To

obtain a criterion for the equilibrium of a crack of speci-

fied dimension, a certain property of the energy of a body

with a crack has to be assumed. Let c denote the character-

istic dimension of the crack, such as its length or radius,

so that W, UrJ Ud, K, and S can be considered as functions

of c . Denoting by 6 the variations corresponding to an

infinitesimal change 6c of the characteristic dimension c,
the condition for an equilibrium crack can be written in the

form

6W = 6r + 6 Ud + 6S . (2.2)

The variations are taken for constant values of all the param-

etbrs characterizing the state of the body. The physical

meaning of condition (2.2) is the following: the increments

of the work of the external forces and of the released strain



energy, 6W - 6 Ur , corresponding. to an increment of the crack

dimension 6c , are equal to the increment of the dissipated

energy and of the surface energy, 6 Ud + 6S , corresponding

tO the same increment of the crack dimension.

If the equality sign in .(2.3) is replaced by an inequal-

ity sign, the crack is not in equilibrium. In particular, if

6W - 6Ur < 6Ud + 6S (2.3)

the characteristic dimension of the crack is larger than that

corresponding to the state of equilibrium. If

6w - r > 6Ud + 6s (2.4)

the characteristic dimension of the crack is smaller than

that corresponding to the state of equilibrium.

For an elastic (brittle) solid, Ud - 0 and condition

(2.2) becomes

6W - 6 Ur = 6S (2.5)

The quantity -6W + 6Ur represents the variation of the po-

tential energy of the body. Equation (2.5) expresses thus

the Griffith criterion which states that the decrement of the

potential energy is equal to the increment of the surface

energy.

The criterion of Orowan for elastic-plastic solids can

be derived from Eq. (2.2) by assuming that the total dissi-

pation of energy occurs in a thin layer at the surface of

the crack; the variation of energy dissipated in this surface
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will be denoted by 6U~s) U(s) may be considered as a ma-

terial characteristics in a similar manner as the surface

energy S . Thus, Eq. (2.2) becomes

6W - 6Ur = 6U(s) + 6S (2.6)

which expresses Orowan's condition that the decrement of the

potential energy is equal to the increments of the surface

plastic work and the surface energy. Orowan notes that for
highly ductile solids 6U»s) >> 6s and, consequently, 6S

may be neglected in Eq. (2.6).

Consider now a solid with time-dependent dissipation
mechanism, for which 6Uds) is zero or does not depend on

time, such as, for instance, in certain viscoelastic solids

in which the extension of a crack does not produce an in-

stantaneous dissipation of energy. Then, three cases are

possible.

(a) 6 Ur decreases with time in such a way that

6W - 6 Ur increases in time, i.e. the amount of potential

energy to be released during crack propagation increases. An

equilibrium crack becomes at a certain instant of time a non-

equilibrium crack and tends to propagate with increas

time. This process is reflected in the decrease of strength

under sustained loading.

(b) 6U increases in time and 6W - 6 Ur decreases.

In this case the opposite effect can be expected: the

strength under slowly applied load is larger than if the load

is applied at a high rate.

(c) If neither 6 Ur nor 6W - 6 Ur depend on time, the

viscoelastic properties of the solid do not influence the

process of crack propagation.
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The argument presented above can be applied to the con-

sideration of the effect of viscoelastic creep and relaxation

in a body as a whole. However, since the viscoelastic phenom-

ena in the vicinity of a leading edge of a crack depend on the

character and distribution of the bond stresses, the energy

criteria are not quite independent of certain stress hypo-

theses discussed in the following section.

Another problem of time dependent crack propagation might

arise in the case of variation of the surface energy S , or

of the specific surface energy s per unit area, as a func-

tion of time. The same result may however, be obtained by

either assuming variation of 6U(SUor an opposite variationd
of 6S with time. Certain conclusions may be derived on the

basis of the simplifying assumption that S is constant in

time.

I7



3. STRESS CRITERIA OF EQUILIBRIUM

The stress criteria of equilibrium are based on the com-

parison of the actual state of stress at the leading edge of

a crack with a limiting state associated with a given solid.

An exact approach to this problem would require a knowledge

of the bond forces developing at the edge of a crack. How-

ever, it is possible to assume certain characteristics of the

state of stress which are introduced as measures of the ten-

dencies of a crack.

In a method developed by Barenblatt 4 it is assumed that

at the leading edge of a crack large (but finite) cohesion

dorces exist, the distribution of which is controlled by the

character of bond forces, but is unknown. Now the following

assumptions are made concerning the effect of these forces:

(a) the leading zone of the crack is very small compared to

the characteristic dimension of the crack; (b) the displace-

ments at the leading edge of a crack are unique for an equi-

librium state and do not depend on the type of loading (for

cleavage type fracture); (c) the crack closes smoothly, i.e.

the slope of the surfaces is zero at the end.

Let us apply the above proposition to a circular (axially

symmetrical) crack in an infinite body (Fig. 1). In a cylin-

drical coordinate system r, e , z , in which, because of sym-

metry, e does not enter into the equations, let R denote

the radius of the crack, d the width of the leading zone,

and g(r) the loading on the surfaces of the crack. The

total loading g(r) consists of an arbitrary pressure p(r)

and of the cohesion forces G(r)
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g(r) = p(r) , 0 < r < R - d
(3.1)

g(r) = -G(r) , R - d < r < R

The z-component of the displacement of the surfaces of

the crack 5

1 1

I=4(i - V2 )R f Q- La - f xg(xaR)dx (3.2)
P 0 x-

where p = r/R , E and v are the Young modulus and Poisson

ratio, respectively.

The condition

ýW = 0(7r)r=R

and Eq. (3.1) result in the equation

1-d/R 1f x f(xR)dx x G(xR) dx • (3.3)

01 - l-d/R R/l -

The integral on the right-hand side of Eq. (3.3) can be

transformed into the form

1_ F(s)ds S(3.A)

0

where F(s) = G(r) , s = R - r
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Equation (3.3) becomes

d _ R___ dx- 1 f I ds (3.5)

f IvI 1 7, _R %Iso 0

or

R-d

f P(r) dr = K (3.6)

The quantity

d

K = f s ds (3.7)
o

thus characterizes the distribution of the unknown cohesion

forces F(s) . It is introduced as a new material constant;

its role is similar to that of the specific surface energy

(per unit area). In fact, it can be shown that in order to

obtain the same crack-resistance from the energy theory and

the stress theory the relation should hold

K2  7rEs

Kx -WE (3.8).

For a given loading p(r) and with a known cohesion

modulus K , Eq. (3.6) determines the radius R corresponding

to the equilibrium state of the crack. A similar relation

has been derived by Barenblatt for the case of plane stress

10



b
Sp(x) b x dx 72t K(39
f x a

a

with notations indicated in Fig. 2.

Another approach to the same problem is based on the

assumption that no cohesive forces act even near the leading

edges of the surface of the crack while the material remains

perfectly elastic beyond these edges. For any given loading,

for instance for uniform pressure on the surfaces of the

crack, the state of stress can be determined. All stress com-

ponents have a singularity at the edge of the crack. In par-

ticular, the normal stress az is

z -- C > 0 (3.10)

where • = r - R for a circular crack, and • = x - b or

= - x for a crack in plane strain (Figs. 3 and 4). For

an equilibrium crack, the constant C reaches its maximum

value C which depends on the type of the material. The

crite'rion represented by (3.10) gives the same results as

the energy criterion for brittle solids if the constant Cmax

is related to the surface energy s in the following way

2Es (3.11)
ma -i(l -V')

The shapes of cracks analyzed in this way are different

from those based on the previous theory. The surfaces of a

crack do not close smoothly. In the case of uniform pressure,

the profile of the crack is elliptical (Figs. 3 and 4).
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Consider now certain generalizations of the above con-

siderations. L. M. Kachanov gave recently7 an estimate of

the time effect for linear viscoelastic solids in relation to

Barenblatt's theory. He introduced a new material constant

characterizing the rate of change of the cohesion modulus K
.with increasing deformation.

In this note a different approach is proposed. The time

dependence of crack resistance will be related to the surface

energy s and the viscoelastic properties of the solid. The

argument used here is valid for either one of the above stress

criteria.

Considering an arbitrary linear viscoelastic solid, the

simplifying assumption is made that v is approximately con-

stant, although it is possible to extend all considerations

to the case of a variable v . Consider a crack whose char-

acteristic dimension at an initial time t = to is larger.

than that corresponding to the state of equilibrium, i.e.

the parameters K or C are smaller than their limit values

Kmax and Cmax , respectively. In order to explain the fact

that at a certain time t the crack reaches its equilibrium

state and starts to propagate, it has to be assumed that the

limit values Kmax and Cmax decrease in time. The same

conclusion is suggested by the relations (3.8) and (3.11)

where a reduced modulus E should be taken into account. At

the same time, Eqs. (3.8) and (3.11) give a quantitative

measure of KMax and, Cmax * as functions of time. Denoting

by E(t) an equivalent modulus controlling deformation under

constant load, i.e.

uo
B(t) = B - ' (3.12)
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where E is the modulus of initial deformation, u0  is an

arbitrary component of strain or displacement at initial time,

u(t) is the same quantity at the time t , the existence of

E(t) defined by (3.12) follows immediately from the assump-

tions and type of the problem discussed. For other problems

an approximate value of E(t) should be established. Hence

[Ka (t) ]2 =E(t) s(313)

and

[C a(t) ]2 = ~)2s (-4
= W( - (3.- l)

The above relations can also be written as

K: = K o (3.15)

and

Cmax(t) a xo (3.16)

where Ko max and Co max characterize crack resistance

.under short time loading.

In the processes of fracture of metals at high tempera-

tures, two different effects exist. One of them is the above

mentioned effect of creep, reducing crack resistance accord-

ing to the relations (3.13),...(3.16). The other effect, not

existing in linear viscoelastic solids, is a redistribution

of stresses caused by the non-linearity of creep and relaxation
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This results in reduced intensity of stresses near the edge

of a crack, and in this way it counteracts the former effect

of creep.

These conditions of fracture are implied by the type of
inelastic behavior shown by metals in high temperatures. The
existence of two. opposite effects is confirmed by experiments

in so-called static fatigue of metals, which indicate that

the reduction of strength in time is much smaller than would

be expected from large creep deformations.



4. CONCLUDING REMARKS

The topics discussed in this note represent a formulation

of some laws of fracture mechanics in terms of concepts and

equations of mechanics of continua. Realizing fully the in-

adequacy of this phenomenological approach, it is also neces-

sary to keep in mind its merits. Use is made of relatively

few assumptions and hypotheses, usually following from ex-

perimental evidence. Certain simplifications (as, for in-

stance, the models of linear elastic or linear viscoelastic

solids) have a rather definite scope of validity. The pre-

dictions made by phenomenological theories proved to be cor-

rect, at least qualitatively, and of practical use.

The conclusions derived in this note concern two prob-

lems: energy relations for a body with a crack, and stress

conditions-at the leading edge of a crack. In particular,

the effect of inelastic properties has been taken into account.

The qualitative discussion of this effect and, for a special

case, certain quantitative relations are given.

Further questions arise in connection with the approach

presented in this report which require attention:

(a) Experimental investigation of the values of the sur-

face energy the maximum cohesion modulus Kmax , and the maxi-

mum stress intensity factor Cmax

(b) Experimental investigation of the time dependence of

crack resistance of several types of inelastic materials,

(c) Establishment of a reasonable distribution of bond

forces compatible with the considerations of continuum
.mechanics.

(d) Development of the methods of analysis of stresses,

strain, and energies in the presence of cracks under different

loading conditions.
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Fig. 1. Stress distribution on the
surfaces of a circular crack with
smoothly closing edges.
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b

Fig. 2. Stress distribution on the
surfaces of an infinitely long crack
with smoothly closing edges.

17



zjW

Oj-

r

Fig. 3. Stress distribution in the
vicinity of a circular crack with
elliptical profile.

z

Fig. 4. Stress distribution in the
vicinity of an infinitely long crack
with elliptical profile.
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